Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cells ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090008

ABSTRACT

Several reports have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to also be neurotropic. However, the mechanisms by which SARS-CoV-2 induces neurologic injury, including neurological and/or psychological symptoms, remain unclear. In this review, the available knowledge on the neurobiological mechanisms underlying COVID-19 was organized using the AOP framework. Four AOPs leading to neurological adverse outcomes (AO), anosmia, encephalitis, stroke, and seizure, were developed. Biological key events (KEs) identified to induce these AOs included binding to ACE2, blood-brain barrier (BBB) disruption, hypoxia, neuroinflammation, and oxidative stress. The modularity of AOPs allows the construction of AOP networks to visualize core pathways and recognize neuroinflammation and BBB disruption as shared mechanisms. Furthermore, the impact on the neurological AOPs of COVID-19 by modulating and multiscale factors such as age, psychological stress, nutrition, poverty, and food insecurity was discussed. Organizing the existing knowledge along an AOP framework can represent a valuable tool to understand disease mechanisms and identify data gaps and potentially contribute to treatment, and prevention. This AOP-aligned approach also facilitates synergy between experts from different backgrounds, while the fast-evolving and disruptive nature of COVID-19 emphasizes the need for interdisciplinarity and cross-community research.


Subject(s)
Adverse Outcome Pathways , COVID-19 , Stroke , Humans , SARS-CoV-2 , Blood-Brain Barrier
2.
Cells ; 11(19)2022 09 27.
Article in English | MEDLINE | ID: covidwho-2065728

ABSTRACT

Loss of the sense of smell (anosmia) has been included as a COVID-19 symptom by the World Health Organization. The majority of patients recover the sense of smell within a few weeks postinfection (short-term anosmia), while others report persistent anosmia. Several studies have investigated the mechanisms leading to anosmia in COVID-19; however, the evidence is scattered, and the mechanisms remain poorly understood. Based on a comprehensive review of the literature, we aim here to evaluate the current knowledge and uncertainties regarding the mechanisms leading to short-term anosmia following SARS-CoV-2 infection. We applied an adverse outcome pathway (AOP) framework, well established in toxicology, to propose a sequence of measurable key events (KEs) leading to short-term anosmia in COVID-19. Those KEs are (1) SARS-CoV-2 Spike proteins binding to ACE-2 expressed by the sustentacular (SUS) cells in the olfactory epithelium (OE); (2) viral entry into SUS cells; (3) viral replication in the SUS cells; (4) SUS cell death; (5) damage to the olfactory sensory neurons and the olfactory epithelium (OE). This AOP-aligned approach allows for the identification of gaps where more research should be conducted and where therapeutic intervention could act. Finally, this AOP gives a frame to explain several disease features and can be linked to specific factors that lead to interindividual differences in response to SARS-CoV-2 infection.


Subject(s)
Adverse Outcome Pathways , COVID-19 , Olfaction Disorders , Anosmia/etiology , COVID-19/complications , Humans , Olfaction Disorders/diagnosis , Olfaction Disorders/etiology , SARS-CoV-2 , Smell/physiology , Spike Glycoprotein, Coronavirus
3.
J Clin Med ; 11(19)2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2043823

ABSTRACT

The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal barrier and contributing to inflammatory response, which might lead to GI manifestations, including diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence permits to highlight knowledge gaps and current inconsistencies in the literature and to guide further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission, we then discuss the potential implication on clinical practice, including on long COVID. A better understanding of the GI implication in COVID-19 is still needed to improve disease management and could help identify innovative therapies or preventive actions targeting the GI tract.

4.
J Clin Med ; 11(18)2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2033032

ABSTRACT

Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.

5.
J Clin Med ; 11(15)2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1969322

ABSTRACT

Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.

6.
Reprod Toxicol ; 111: 34-48, 2022 08.
Article in English | MEDLINE | ID: covidwho-1819592

ABSTRACT

The possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential SARS-CoV-2 fetal brain pathogenesis. Apart from the possible direct involvement of SARS-CoV-2 or its specific viral components in the occurrence of neurological and neurodevelopmental manifestations, we recently reported the presence of toxin-like peptides in plasma, urine and fecal samples specifically from COVID-19 patients. In this study, we investigated the possible neurotoxic effects elicited upon 72-hour exposure to human relevant levels of recombinant spike protein, toxin-like peptides found in COVID-19 patients, as well as a combination of both in 3D human iPSC-derived neural stem cells differentiated for either 2 weeks (short-term) or 8 weeks (long-term, 2 weeks in suspension + 6 weeks on MEA) towards neurons/glia. Whole transcriptome and qPCR analysis revealed that spike protein and toxin-like peptides at non-cytotoxic concentrations differentially perturb the expression of SPHK1, ELN, GASK1B, HEY1, UTS2, ACE2 and some neuronal-, glia- and NSC-related genes critical during brain development. Additionally, exposure to spike protein caused a decrease of spontaneous electrical activity after two days in long-term differentiated cultures. The perturbations of these neurodevelopmental endpoints are discussed in the context of recent knowledge about the key events described in Adverse Outcome Pathways relevant to COVID-19, gathered in the context of the CIAO project (https://www.ciao-covid.net/).


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Brain/metabolism , Child , Humans , Neuroglia , Neurons/metabolism , Peptides , Spike Glycoprotein, Coronavirus/metabolism
7.
Atmosphere ; 13(1):97, 2022.
Article in English | MDPI | ID: covidwho-1613600

ABSTRACT

In early 2020, the COVID-19 pandemic spread globally, and severe measures to control it were implemented. This study investigates the impact of the lockdown on the air quality of three provinces in the Valencia region, eastern Spain, in the years 2015–2020, focusing on particulate matter (PM). A thorough statistical analysis using different approaches is conducted. Hourly patterns are also assessed. In addition, the role of meteorological parameters on PM is explored. The results indicate an overall PM10 reduction of 16.5% when comparing the lockdown in 2020 and the 2015–2019 period, while PM2.5 increased by 3.1%. As expected, urban zones experienced higher reductions than suburban zones, which experienced a PM concentration increase. The impact of the drastic drops of benzene, toluene and xylene (77.4%, 58.0% and 61.8%, respectively) on the PM values observed in urban sites is discussed. Our study provides insights on the effect of activity changes over a wide region covering a variety of air quality stations, urban, suburban and rural, and different emission types. The results of this work are a valuable reference and suggest the need for considering different factors when establishing scientific air pollution control strategies.

SELECTION OF CITATIONS
SEARCH DETAIL